Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart.
نویسندگان
چکیده
The endoplasmic reticulum (ER) stress response (ERSR) is activated when folding of nascent proteins in the ER lumen is impeded. Myocardial ischemia was recently shown to activate the ERSR; however, the role of this complex signaling system in the heart is not well understood. ER stress activates the transcription factor ATF6, which induces expression of proteins targeted to the ER, where they restore protein folding, thus fostering cytoprotection. We previously developed a transgenic mouse line that expresses a conditionally activated form of ATF6 in the heart. In this mouse line, ATF6 activation decreased ischemic damage in an ex vivo model of myocardial ischemia/reperfusion and induced numerous genes, including mesencephalic astrocyte-derived neurotrophic factor (MANF). In the present study, MANF expression was shown to be induced in cardiac myocytes and in other cell types in the hearts of mice subjected to in vivo myocardial infarction. Additionally, simulated ischemia induced MANF in an ATF6-dependent manner in neonatal rat ventricular myocyte cultures. In contrast to many other ER-resident ERSR proteins, MANF lacks a canonical ER-retention sequence, consistent with our finding that MANF was readily secreted from cultured cardiac myocytes. Knockdown of endogenous MANF with micro-RNA increased cell death upon simulated ischemia/reperfusion, whereas addition of recombinant MANF to media protected cultured cardiac myocytes from simulated ischemia/reperfusion-mediated death. Thus, a possible function of the ERSR in the heart is the ischemia-mediated induction of secreted proteins, such as MANF, that can function in an autocrine/paracrine manner to modulate myocardial damage from ER stresses, including ischemia.
منابع مشابه
Mesencephalic Astrocyte-Derived Neurotrophic Factor Is Involved in Inflammation by Negatively Regulating the NF-κB Pathway
Inflammation can cause endoplasmic reticulum (ER) stress and therefore activates the unfolded protein response (UPR). ER stress and the consequent UPR have the potential to activate NF-κB. However, the factors mediating the crosstalk between ER stress and the NF-κB pathway remain unclear. Here, we determined that ER stress inducible protein Mesencephalic Astrocyte-derived Neurotrophic Factor (M...
متن کاملIdentification of Mesencephalic Astrocyte-Derived Neurotrophic Factor as a Novel Neuroprotective Factor for Retinal Ganglion Cells
Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly discovered secreted neurotrophic factor, has been proven to not only protect dopaminergic neurons and other cell types but also regulate neuroinflammation and the immune response to promote tissue repair and regeneration. However, to date, there is no information regarding the relationship between MANF and retinal ganglion cell...
متن کاملAn evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): At the crossroads of poriferan innate immune and apoptotic pathways
The mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a recently discovered family of neurotrophic factors. MANF can be secreted but is generally resident within the endoplasmic reticulum (ER) in neuronal and non-neuronal cells, where it is involved in the ER stress response with pro-survival effects. Here we report the discovery of the MANF homolog SDMANF in the sponge Sube...
متن کاملMesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion.
The endoplasmic reticulum (ER) stress protein mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to protect cells from stress-induced cell death before and after its secretion; however, the conditions under which it is secreted are not known. Accordingly, we examined the mechanism of MANF release from cultured ventricular myocytes and HeLa cells, both of which secrete ...
متن کاملMRI Dynamically Evaluates the Therapeutic Effect of Recombinant Human MANF on Ischemia/Reperfusion Injury in Rats
As an endoplasmic reticulum (ER) stress-inducible protein, mesencephalic astrocyte-derived neurotrophic factor (MANF) has been proven to protect dopaminergic neurons and nondopaminergic cells. Our previous studies had shown that MANF protected against ischemia/reperfusion injury. Here, we developed a magnetic resonance imaging (MRI) technology to dynamically evaluate the therapeutic effects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 103 11 شماره
صفحات -
تاریخ انتشار 2008